Evidences of adaptive traits to rocky substrates undermine paradigm of habitat preference of the Mediterranean seagrass Posidonia oceanica
نویسندگان
چکیده
Posidonia oceanica meadows are acknowledged as one of the most valuable ecosystems of the Mediterranean Sea. P. oceanica has been historically described as a species typically growing on mobile substrates whose development requires precursor communities. Here we document for the first time the extensive presence of sticky hairs covering P. oceanica seedling roots. Adhesive root hairs allow the seedlings to firmly anchor to rocky substrates with anchorage strength values up to 5.23 N, regardless of the presence of algal cover and to colonise bare rock without the need for precursor assemblages to facilitate settlement. Adhesive root hairs are a morphological trait common on plants living on rocks in high-energy habitats, such as the riverweed Podostemaceae and the seagrass Phyllospadix scouleri. The presence of adhesive root hairs in P. oceanica juveniles suggests a preference of this species for hard substrates. Such an adaptation leads to hypothesize a new microsite driven bottleneck in P. oceanica seedling survival linked to substrate features. The mechanism described can favour plant establishment on rocky substrates, in contrast with traditional paradigms. This feature may have strongly influenced P. oceanica pattern of colonisation through sexual propagules in both the past and present.
منابع مشابه
Recruitment and Patch Establishment by Seed in the Seagrass Posidonia oceanica: Importance and Conservation Implications
Seagrasses are declining globally, and deeper understanding is needed on the recruitment potential and distribution of new populations for many threatened species to support conservation planning in the face of climate change. Recruitment of Posidonia oceanica, a threatened seagrass endemic to the Mediterranean, has long been considered rare due to infrequent flowering, but mounting evidence de...
متن کاملAssessing Posidonia oceanica Seedling Substrate Preference: An Experimental Determination of Seedling Anchorage Success in Rocky vs. Sandy Substrates
In the last decades the growing awareness of the ecological importance of seagrass meadows has prompted increasing efforts to protect existing beds and restore degraded habitats. An in-depth knowledge of factors acting as major drivers of propagule settlement and recruitment is required in order to understand patterns of seagrass colonization and recovery and to inform appropriate management an...
متن کاملResponse of the non-indigenous Caulerpa racemosa ̊ (Forsskal) J. Agardh to the native seagrass Posidonia oceanica (L.) Delile: effect of density of shoots and orientation of edges of meadows
Caulerpa racemosa is a tropical green alga introduced into the Mediterranean as an immigrant from the Red Sea which has successfully fast-spread in the south-eastern and in the north-western part of the basin. C. racemosa occurs mostly in shallow but also in deep subtidal habitats colonising hard and soft substrata where turfs, erect algae and even seagrasses are present with the potential to p...
متن کاملLinking Seed Photosynthesis and Evolution of the Australian and Mediterranean Seagrass Genus Posidonia
Recent findings have shown that photosynthesis in the skin of the seed of Posidonia oceanica enhances seedling growth. The seagrass genus Posidonia is found only in two distant parts of the world, the Mediterranean Sea and southern Australia. This fact led us to question whether the acquisition of this novel mechanism in the evolution of this seagrass was a pre-adaptation prior to geological is...
متن کاملAxIOM: Amphipod crustaceans from insular Posidonia oceanica seagrass meadows
BACKGROUND The Neptune grass, Posidonia oceanica (L.) Delile, 1813, is the most widespread seagrass of the Mediterranean Sea. This foundation species forms large meadows that, through habitat and trophic services, act as biodiversity hotspots. In Neptune grass meadows, amphipod crustaceans are one of the dominant groups of vagile invertebrates, forming an abundant and diverse taxocenosis. They ...
متن کامل